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Executive summary
Deliverable D5.4 is a demonstration deliverable that contains videos showing the implementa-
tion of the disassembly process for different heat cost allocators (HCAs).

The implemented disassembly workflow has been evaluated with two different HCAs, the
Kalo 1.5 and Qundis HCA. We previously presented the archetypical solution for Kalo 1.5
HCA in deliverable D5.2 based on a workflow proposed in deliverable D5.1. In this deliv-
erable, we extend this workflow to support additional devices by employing adaptation and
self-reconfiguration of the workcell. The approach is demonstrated in two separate videos that
can be viewed via the links provided below.

• Video 1: The ReconCycle modular robotic workcell performing the disassembly of the
Kalo 1.5 and Qundis heat cost allocators using adaptation and self-reconfiguration:

Video link: http://reconcycle.eu/videos/d5.4/hca_disassembly

• Video 2: Adaptation of the levering operation for extraction of PCBs from different heat
cost allocators in the ReconCycle modular robotic workcell:

Video link: http://reconcycle.eu/videos/d5.4/levering

Additionally, we show some aspects of adaptation and reconfiguration that exhibit the newly de-
veloped methods and technologies that can be used to expand the functionalities of an adaptive
and reconfigurable recycling workcell:

• Video 3: Self-reconfiguration of a variable stiffness gripper:

Video link: http://reconcycle.eu/videos/d5.4/gripper

• Video 4: Precise grasping of small objects with qb SoftHand2:

Video link: http://reconcycle.eu/videos/d5.4/softhand

• Video 5: Teaching contact skills and adaptation to unknown object geometry with force
controller:

Video link: http://reconcycle.eu/videos/d5.4/contact_skills

• Video 6: Learning of disassembly operations in constrained environments:

Video link: http://reconcycle.eu/videos/d5.4/constrained_disassembly

These implementations demonstrate how the current ReconCycle system can be applied to
disassemble different heat cost allocators for the purpose of electronic waste recycling. The
proposed solutions for adaptation and self-reconfiguration in a robotic workcell enable handling
of different devices of the same general type, e.g. heat cost allocators, for the purpose of
automated recycling of electronic waste. The proposed technologies provide a solid basis for
further developments of the ReconCycle system to support disassembly protocols for a further
spectrum of electronic devices.
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1 Introduction
The goal of the ReconCycle project is to introduce the concept of adaptation and reconfiguration
to the field of electronic waste recycling, which is still largely dominated by manual labor
due to the lack of flexibility of existing solutions. In this deliverable, we first present the
implementation of the disassembly protocol for two different heat cost allocators to demonstrate
that our framework can be applied for disassembly tasks in the domain of electronic waste
recycling, where adaptative, reconfigurable software and hardware are necessary to automate
the recycling procedures.

The complete disassembly solution was implemented in the ReconCycle reconfigurable
robotic workcell located at the JSI facilities. The complete disassembly process for two dif-
ferent HCAs is shown in Video 1, which is described in more detail in Section 2. To handle
different object of the same type, both hardware and software need to support a high level of
flexibility. For this purpose, UGOE and JSI developed a vision-based system that can suggest
the next action to proceed with the disassembly. In addition, to grasp different objects at
different locations, we need to be able to not only identify them, but also to estimate their
poses with sufficient accuracy.

Adaptation of the levering operation for the extraction of PCBs from different heat cost
allocators is shown in detail in Video 2, which is described in Section 3.

The qb Variable Stiffness gripper (VSG), developed by the project partners QB and IIT,
is used to perform pin pushing, levering and grasping various parts in the shown disassembly
procedures. In Video 3 and Section 4 we show how the VSG can be reconfigured to support
handling even wider range of objects. Video 4 shows how the upgraded qb SoftHand2 Research
can precisely grasp small objects such as batteries.

Videos 5 and 6 show some further aspects of adaptation, which were not yet integrated in
the ReconCycle disassembly pipeline.

2 Adaptable disassembly process for heat cost allocators
We have implemented two types of adaptation in the recycling cell:

• vision-based action prediction for situations where several actions are possible to continue
the disassembly process,

• adaptation of disassembly skills to different objects within the same device type.

The first demonstrator (Video 1) shows how the semantic scene analysis can be used to
determine relations between the parts present in the scene in order to determine which of the
possible follow-up actions should be performed. The second demonstrator (Video 2) shows how
the parameters of a predefined levering actions can be adapted to learn a levering behavior for
a specific heat cost allocator.

2.1 Workflow for the disassembly of two different HCAs
We used two different heat cost allocators to demonstrate the adaptation processes in the
recycling cell (see Fig. 1). The workflows for their disassembly are shown in Fig. 2 and 3,
respectively. The main difference between the two workflows is in the additional step necessary
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(a) Kalo 1.5 (b) Qundis

Figure 1: Two different heat cost allocators: Kalo 1.5 and Qundis. In some Qundis HCAs, a
plastic pin prevents performing the levering operation directly, as it blocks access to the gap.
An additional pin pushing operation is necessary.

Figure 2: Disassembly workflow for Kalo 1.5 heat cost allocator

Vision does not detect a pin

Figure 3: Disassembly workflow for Qundis heat cost allocator
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to extract the PCB of Qundis HCA. This is because the Qundis HCA contains a pin that must
be removed before the PCB can be levered out. However, the pin is not always present, in
which case the workflow for Qundis HCA is the same as for Kalo 1.5 HCA. We use vision to
determine which action should be executed after the “transport to the vise” action.

Another important difference between the two HCAs is the size of the gap between the edge
of the HCA housing and the PCB. Note that in the case of Kalo 1.5, the gap is very wide while
in the case of Qundis, the gap is narrow. Thus the levering procedure suitable for Kalo 1.5
is not applicable to Qundis and vice versa. We implemented a skill adaptation procedure to
automatically learn the levering actions for both cases.

2.2 Modular workcell for adaptive recycling
The robotic workcell required for the required disassembly processes was implemented based
on a modular workcell that was first utilized in deliverable D5.2. For the programming of
disassembly procedures, we use the FlexBE behavior engine, as presented in D5.2 and D1.1.
The poses and trajectories needed to parametrize the FlexBE state machines are acquired by
kinesthetic teaching and/or using the vision system.

Figure 4: Workcell performing the disassembly

In the current workcell, five ReconCycle modules – all developed based on the ReconCycle
archetypical module – are used to implement the disassembly process for different heat cost
allocators:

• Material Input Module, where HCAs to be disassembled are stocked,

• Robot Module with the Franka Emika Robot and the qb SoftHand Research gripper,

• Robot Module with the Franka Emika Robot and the qb Variable Stiffness Gripper (VSG),
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• Vise Module, with the pneumatic vise, and

• Cutter Module, with the pneumatic cutter.

See deliverable D1.2 and reference [7] for more details about these modules. The modules were
integrated in the ReconCycle ROS network as described in deliverable D1.1 and reference [9].

2.3 Implementation of action prediction framework
Contrary to the archetypical solution presented in D5.2, where the disassembly procedure was
fixed and the parameters of the disassembly workflow were recorded by kinesthetic teaching,
we employed a vision-based system for action prediction in this demonstrator. It is based on
the ReconCycle vision system for scene analysis described in deliverable D2.1.

The generic state machine, implemented as a FlexBe behaviour, consists of several blocks as
shown in Fig. 5. The block Get next action obtains the information about the previous action
execution and suggests the next action(s) to proceed with the disassembly. The blocks Cut,
Lever, Move, Push. etc. trigger the respective operations. The block Concurrency indicates
the possibility of concurrent execution of several actions following the FlexBe mechanism for
the concurrent execution of several actions.

Get next

action(s)

Push

Cut

Lever

Transfer

Previous action(s)

execution details

...

Selected

action(s)

(Parallel)
action performer

Figure 5: A simplified scheme of the action prediction framework

Each block is implemented as a FlexBE state, which passes the action parameters via
the corresponding ROS interfaces to perform the necessary robot movement, query the vision
system to extract additional information, control the peripheral devices, etc. The Parallel action
performer block allows for concurrent execution of actions (e.g., when one robot is moving the
plastic housing into the dedicated bin for plastic waste, while the other is transferring the PCB
into the cutter module for further manipulation).
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Currently, the action prediction framework follows a predefined disassembly workflow. Based
on the success of the previously executed action, it continues with the next possible action from
the action queue. Nevertheless, this kind of architecture allows us to develop models for fully
adaptive disassembly processes, where the order of operations may depend on the conditions of
the parts. The action prediction framework will be described in more detail in the upcoming
deliverable D3.2.

2.3.1 Demonstration of vision-based action prediction

The application of the action prediction system is demonstrated in Video 1.
The vision system detects an HCA in the scene and determines the model as Kalo 1.5 (see

Fig. 6). The first robot starts by picking up the HCA using qb SoftHand Research gripper and
places it in a pneumatic vise, which closes in order to firmly clamp the housing. The vision
system detects that the gap for levering exists and suggests to proceed with the levering action.

Figure 6: Segmented image of Qundis (left) and Kalo 1.5 HCA (right). The segmented images
are used to determine the type of HCA and the picking location.

Figure 7: Battery location on the tray after cutting operation as detected by the vision system
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The second robot creates the plan for the levering action and breaks the PCB out of the housing,
using the lever tool incorporated in the VSG. The robot grasps the PCB using the VSG and
places it into the cutter. When the battery is cut from the PCB, the robot uses the same tool
to pick up the battery and places it into a container designated for the removed batteries. The
battery location is determined with the vision system as shown in Fig. 7. Concurrently, the
jaws of the vise are opened, allowing the first robot to pick up the empty housing using the qb
SoftHand and transfer it to the designated container.

In the next task, a different model of HCA is detected, namely the Qundis HCA. The
disassembly steps are similar as in the first cycle. Parameters for grasping, levering, and
inserting the PCB into the cutter are obtained from the vision system. The difference occurs
before the levering action as no suitable gap to perform the levering out of the plastic housing
is detected. Thus the action predictor suggests removing the pin before levering. To ensure
that the pin does not remain stuck in the levering gap, the vise is rotated upside down so that
the pin is removed and the vise is rotated back up. The remaining steps follow in the same
order as for the Kalo 1.5 device.

3 Adaptation of the levering operation for extraction of PCBs from
different heat cost allocators

One of the main steps in the disassembly pipeline for the considered devices is the levering
operation. When extracting the PCB, levering allows the robot to apply greater forces using a
fulcrum (levering support) at the edge of the HCA. If the HCA is one of the known HCA types,
this task can be accomplished using pre-recorded robot trajectories. A more general approach
to levering is needed for new HCA types or if the HCA to be disassembled is damaged so that
the preprogrammed trajectory does not result in a successful levering operation. To address
this, we implemented an adaptive levering procedure based on periodic dynamic movement
primitives (DMPs) and force-torque feedback control to determine contact points.

Fig. 8 shows a typical levering setup. As the lever, we use the fixed finger of the VSG.
The part to be levered lies within the object. To increase mechanical advantage, the lever is
positioned against the fulcrum.

The levering action consists of four steps. It assumes that the HCA has a flat bottom and
lies on a horizontal surface. In the first step, the vision system detects the gap between the edge
of the HCA and the PCB where the lever should be placed. The vision system also indicates
the direction in which the lever should move to establish a contact with the PCB (x direction

PCB
to be levered

edge of the plastic housing
(serving as fulcrum)

contact point

robot
flange

lever

x

z

Figure 8: A simplified scheme of elements in the levering process.
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Figure 9: Gap detection results for Kalo 1.5 HCA (right) based on depth image (left). The blue
area shows the gap where levering is possible. Blue arrow shows a possible levering direction,
while red arrows show invalid directions.

in Fig. 8). The desired lever position is in the middle of the gap, which is detected by vision
as shown in Fig. 9. Based on the length of the gap, we determine also the initial inclination of
the lever. Next, the robot starts moving in the negative z direction to establish contact with
the bottom of the HCA housing. The motion is stopped once the force FTCP

z acting on the
tool center point in vertical direction exceeds a predefined threshold Fmax. The force-torque
estimation is performed internally by the Franka Emika robot control system using internal
joint torque sensors [4].

In the second step, the robot moves along the positive x axis until the horizontal force
FTCP
x exceeds the force threshold Fmax. At this point the lever is in contact with the PCB to

be levered out of the HCA.
The aim of the third step is to determine the fulcrum. A rotational motion around the y

axis positioned at the tip of the lever is performed. The motion is stopped once the torque My

exceeds the threshold Mmax. The contact with the fulcrum has been established at this point.
Finally, we can proceed with levering out the PCB. We have observed that humans often

use periodic movements when levering, especially when they do not know the force required to
dislodge an object with the lever. In doing so, they slightly increase the force applied to the
lever in each repetition. To mimic this behavior, we generate a single degree-of-freedom (DOF)
sinusoidal movement with an amplitude A and duration tc, which were respectively set to 10°
and 5s in our experiments. The movement was encoded as a periodic DMP [1]. Initially, the
lever is in a position where it touches both the PBC and the fulcrum. While the periodic DMP
is executed, the arising forces and torques are estimated. The levering is considered successful
when shortly after a peak in the estimated force, a sudden drop is detected, meaning that the
locking mechanism has been broken. If one cycle of the periodic DMP is completed without
encountering the success signal, the periodic DMP’s amplitude is increased. This effectively
increases the force applied to the levered part during each iteration. This process is repeated
until the success signal is detected.

The key points of the movements to establish contact with the bottom of the HCA housing,
PCB mounted in the housing, and the fulcrum at the edge of the housing as well as the
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parameters of a periodic DMP that lead to the successful levering action are recorded. Thus
next time the adaptation procedure is not necessary if the same heat cost allocator needs to be
disassembled. A paper presenting an early version of this approach was published in [5].

This process is presented in Video 2 for Kalo 1.5 and Qundis HCA. We first show the
adaptation of the levering operation, followed by the faster execution of the newly acquired
levering action with the learned parameters.

4 Variable stiffness gripper reconfiguration
The gripper finger exchange system complements the existing reconfiguration possibilities of
the ReconCycle system (e.g. Plug and Produce connectors built into archtypical modules as
described in deliverable D1.2).

The design of the finger exchange system is based on the division of the fixed finger into
two parts: the housing connected to the base of the gripper and the removable finger tool. The
interface between these two parts is designed to allow both automated and manual insertion of
the finger tool into the housing. The mechanism is shown in detail in deliverable D4.2.

Complemented with a finger exchange station shown in Fig. 10, it becomes possible to per-
form self-reconfiguration of the variable stiffness gripper. Video 3 shows a sequence performing
automatic fingers exchange in the premises of QB.

This gives us the possibility to develop well suited tools for different disassembly operations
where variable stiffness actuator is beneficial.

(a) VSG with a custom finger (b) Finger exchange station with an al-
ternative finger

Figure 10: Finger exchange system

5 Precise grasping of small objects with soft hand
Robotic workcells for the recycling of electronic devices must deal with devices and parts that
differ significantly in the dimensions and shape. Large electronic devices are often composed of
many small parts that need to be disassembled. Although the original SoftHand features good
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adaptability to objects of different shapes, this capacity is limited when small parts require a
precision grasp, as pointed out in the first periodic project report. The first prototype of the
SoftHand2 is an evolution of the SoftHand that implements the first and the second synergy
of the human hand to allow for precise pinch grasp while preserving the more general adaptive
power grasp. Based on the design of the first prototype, QBR developed the qb SoftHand2
Research as described in more detail in deliverable D4.2. Its market launch was this year at
ICRA 2022. The qb SoftHand2 Research is able to successfully grasp not only the whole heat
cost allocators such as Kalo 1.5 but also its internal components such as the battery. The video
showing these functionalities was prepared in collaboration between IIT and QBR.

6 Teaching contact skills and adaptation to unknown object geom-
etry with force controller

Tactile robots are useful for dynamic task execution in recycling environments where a large
variety of devices need to be disassembled. Therefore, these robots should have the ability to
respond to changing conditions and be easy to (re-)program. Operating under such uncertain
environments for recycling requires unifying subsystems such as robot motion and force policy
into one framework, referred to as tactile skills.

To define and enhance the tactile skills used in ReconCycle, we propose a framework sub-
mitted to IROS2022 [2]. To achieve the increased level of adaptability, we represent all tactile
skills by three basic primitives: contact initiation, manipulation, and contact termination. To
ensure passivity and stability, we develop an energy-based approach for unified force-impedance
control that allows humans to teach the robot motion through physical interaction during the
execution of a tactile skill. While the polishing of a car-door task is presented as our use case
in the accompanying video, various tactile skills, such as levering in the scope of ReconCycle,
can also be carried out.

To handle unexpected changes of contact surfaces for the heat-cost-allocators and adjust the
tool-contact alignment, we extend unified force-impedance control. In the work submitted to
ICRA2023 [3], we propose a framework incorporating an adaptation metric into force-impedance
control such that tactile skill policies can be updated online and progressively via impedance
shaping w.r.t the physical constraints of the environment. Even though, we use the polishing
skill as our use-case, any tactile skill, which requires the robot applying motion with desired
force, can be expressed by our framework. Impedance shaping and force shaping introduces
improved adaptability and robustness to ReconCycle skills onto an unknown and changing
surface.

7 Learning of disassembly graphs in constrained environments
The final video shows how a robot can learn a disassembly graph for a given device by au-
tonomous exploration. The aim is to extract a new disassembly skill sequence for devices
where the optimal sequence is unknown. For this purpose, we developed a new hierarchical
learning scheme where the disassembly task is represented as a directed graph. The graph is
built of nodes and branches, which respectively correspond to the states and actions in the
disassembly process. The upper hierarchical level is essentially a decision-making algorithm.
The optimal decision-making is acquired using reinforcement learning (RL) techniques. The
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Figure 11: Disassembly of a licence car plate light. Left: removal of the transparent cover,
center: disassembly of the bayonet bulb, right: disassembly graph for the entire disassembly
procedure involving both operations.

explorative actions are generated by a constraint-space following (CSF) controller, which looks
for directions where motion is possible using force control. The controller generates explorative
robot motion by adjusting its stiffness in the direction defined by the Frenet-Serret frame at-
tached to the robot path. The executed robot motion trajectories are stored as Cartesian space
dynamic movement primitives and added to the disassembly skill library.

The proposed framework was experimentally verified on a task of learning the disassembly
of a bayonet mount bulb from the casing. To start the learning process, the robot was first
manually guided to a position where it can grasp the bulb. From this initial configuration,
the above-described learning process was started. Due to the constraints imposed by the
environment, the robot needed only two learning cycles to find the optimal disassembly policy.

The second part of the video shows a more complex example of the car licence plate light,
where first the plastic housing needs to be removed as shown in Fig. 11. Afterwards, the
controller proceeds with the disassembly of the bulb in a similar manner as for the 3D printed
mock-up case.

The paper presenting the overall framework is currently under review [8]. In addition, we
developed an invariant representation of a disassembly policy [6]. This formulation can be used
for force-based adaptation of disassembly policies for damaged devices, where the originally
learnt disassembly policy should be adapted.

8 Conclusion
With videos included in this deliverable, we present a solution for the disassembly of two dif-
ferent heat cost allocator devices using the same workcell. For this purpose we developed
suitable adaptation and reconfiguration methods. Video 1 demonstrates that the ReconCycle
workcell can perform the disassembly of different heat cost allocators. The required steps to
perform the disassembly are obtained on-the-fly by the vision-based action prediction frame-
work. Video 2 shows the details of adaptation of the levering operation for the extraction of
PCBs from different heat cost allocators.

The operation of a system for automatic gripper reconfiguration is shown in Video 3. This
is important to support the disassembly of a larger variety of devices. Video 4 shows an
upgraded version of qb SoftHand2 Research, which allows to precisely grasp small objects such
as batteries.

In Videos 5 and 6 we demonstrate some advanced methods for skill adaptation, which can
contribute to the overall flexibility of the recycling cell.
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