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1. Executive Summary 

In this deliverable, we describe semantic scene components that are needed in respect to the planned 
robotic procedures for the generalization of the disassembly protocols. Semantic scene components 
include device type, parts and poses of the objects to be disassembled as well as more abstract features 
(like “gaps”). In the deliverable, each component is defined and we provide procedures for extracting 
of those components. 
This deliverable is about 4 weeks delayed due to the fact the we first needed a solid disassembly protocol 
implemented at the robotic system from which we could make the inference about the different semantic 
components and their relations. This was needed to allow for defining the semantic framework of scene 
analysis in this deliverable. 
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2. Introduction 
In this deliverable we specify semantic scene components relevant for the generalisation procedures of 
ReconCycle. 

We have made a plan to develop the ReconCycle system in several steps with ever increasing demand 
for generalisation. We start with fixed models of non-broken heat cost allocators (HCA), go to damaged 
varieties and finally generalize to models of the HCA of unknown type and to different devices, too 
(e.g. smoke detectors). The plan for this is provided in Table 1, where in column three the relevant 
semantic components are named. Furthermore, we specify the descriptors and define procedures for 
obtaining those descriptors in separate sections below. Note that project partner ECYC is only interested 
in separating batteries and PCBs from the electronic devices. The rest are different plastic components. 
Thus, we focus on the extraction of batteries and PCBs in this document.  

Table 1. Steps for the generalisation of disassembly protocols. 

No of 
step 

Planned activity Relevant scene elements 

1. Disassembly of HCA - Kalo 1.5 Sides of HCA (front, back, left, right), 
PCB, battery, internal components, pose 
of device, pose of battery 

2. Disassembly protocol for HCA 
Qundis/Siemens 

The same as above 

3. Disassembly of mixed pool of HCA Kalo 1.5 
and HCA Qundis/Siemens 

Recognition of HCA type, then same as 
above 

4. Disassembly of damaged HCA - Kalo 1.5 Sides of HCA (front, back, left, right), 
PCB, battery, gap changes in respect to 
known position in undamaged device 

5. Disassembly of unknown HCA Pose of device (for grasping), gaps for 
levering, tool approach points for 
levering, batteries, PCBs 

6 Disassembly of other devices Pose of device (for grasping), gaps for 
levering, tool approach points for 
levering, batteries, PCBs.  

  

The flow diagram given in Fig. 1 below provides an overview of the disassembly framework we plan 
to implement in ReconCycle. The diagram is targeted towards battery separation, but the steps for PCB 
separation would be similar. 
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Figure 1. Flow diagram for battery disassembly for known and unknown heat cost allocators 
(HCAs). On the left, a levering-based approach – as currently applied – is shown. In the dashed 
square on the right a complementary unscrewing route is shown, which is currently not used as 
there are no screws in the currently processed devices. 

The flow diagram begins with the HCA being detected on the work surface of the work cell. The device 
is detected using the above-the-scene RGB camera, and the pose of the device is determined. Using 
techniques described in Section 3, the device can be identified as being of the same class as one that 
has been disassembled previously, or as an examplar belonging to a new device class. For each device 
that is disassembled using this framework, the steps taken to carry out the disassembly process are 
stored (see Section 3 for details). If the class of device, to which the current exemplar belongs, has been 
disassembled before, the same disassembly procedure as before is attempted, with fall-back procedures 
for cases when this fails. If this device class has not been disassembled before, disassembly procedures 
will be attempted in an exploratory way. Currently, devices do not contain screws, so the procedures 
based on levering shown on the left side of the figure are carried out. Essentially, levering is performed 
until it is not possible to lever any more. Then the battery is cut off with material remaining around.  
Note, cleaner separation is more desired, but partial separation is also acceptable from business point 
of view of partner ECYC. Hence, the only two possible disassembly actions currently are levering and 
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cutting. In the future we expect to disassemble devices with the screws, too, where we then plan to 
employ the right part of the flow chart shown within a yellow dashed line. The procedure is similar as 
in the case of levering, where unscrewing is performed until components can be successfully separated. 

Let us consider the disassembly based on levering actions (left side of the diagram) in more depth. First, 
the device is examined using the RGB camera and a depth camera. For levering actions, gaps are 
detected on the device. If a gap is detected for a potential levering action, then this action will be 
attempted. Afterwards, the success of the levering action will be determined. If more than one gap for 
levering is detected, then again a levering action will be attempted using those gaps. In each step of the 
process, the part of the device that contains the battery is of the biggest concern and shall be used for 
further processing. When no more levering actions can be performed, the resulting compound is used 
to cut the battery away from it by use of the cutter. The aim is to remove as many plastic parts as 
possible, however cutting away the battery only with partial success (that is some remaining plastic 
residue) is also acceptable in the given application. 

This is the basic procedure outlined in the flow diagram. When more possible actions are added (e.g. 
unscrewing, as discussed above), the system will need to determine for every step the currently best 
possible action for disassembly. This is will be considered later in the project. 

3. Specifications of Device & Component Segmentation and Pose Estimation 
General definitions: The following faces of any device must be detected, when the device has a 
cuboid-like shape: front, back, left side, right side.  

The following components must be detected: PCB, battery, plastic casing and plastic internal 
components.  

Given an image, elements that are listed above are segmented from the background and assigned their 
respective label (device, battery, PCB, plastic casing). When estimating the pose of the device, first the 
label of the face directed towards the camera is identified. Furthermore, pose estimation uses the 
position and rotation of the component as given by the segmentation mask.   

HCA-specific: All HCAs that we have obtained from ECYC so far are all cuboid-like in shape, and for 
pose estimation we recognize the front, back, left and right side. The HCA Kalo 1.5 has a  lithium 
battery of type BR-1/2AA made by Panasonic or by Varta. 

Procedures for segmentation and pose detection: Here instance segmentation is used, based on the 
camera image, when the camera is mounted directly above the work surface. Instance segmentation 
provides segments as well as segment labels. For analysis, the HCA should be placed on the work 
surface. The computer vision system used is called YOLACT1, which is a neural network approach for 
generating real-time instance segmentation using convolutional layers. The input images are of size 
1450 x 1450. YOLACT uses the ResNet-101 backbone2.  

The pose of the device is extracted using the instance segmentation results: class label for each instance 
as well as segment masks. We determine four class labels: front, back, left side, or right side. To get the 
orientation of the device on the image plane, we apply PCA to fit the smallest possible rectangle to the 
segmentation mask. This rectangle is called the oriented bounding box (or OBB). The orientation of the 
OBB is considered to be the orientation of the device. The centre point of the OBB is considered as the 
centre of the device. The size of the OBB is considered as the (approximate) size of the device. 

In training YOLACT, the images are augmented by randomising hue, vibrance, contrast, saturation. 
Scaling, mirroring, flipping, and rotating are also randomly applied. The neural network has been 

 

1 Bolya, Daniel, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. ‘YOLACT: Real-Time Instance Segmentation’. 
ArXiv:1904.02689 [Cs], 24 October 2019. http://arxiv.org/abs/1904.02689. 
2 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ‘Deep Residual Learning for Image Recognition’. 
ArXiv:1512.03385 [Cs], 10 December 2015. http://arxiv.org/abs/1512.03385. 
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trained on a training set of 1000 annotated images of the HCAs in many different poses, configurations 
and states of disassembly, together with occlusions from robot arms and other systems in the setup. For 
each annotated instance in an image, a class label is provided for that instance. The possible class labels 
are: front, back, left side, right side, The neural network currently used is pre-trained on 20,000 images 
generated synthetically using the Nvidia Dataset Synthesizer, a plugin for Unreal Engine 43. The 
synthetic models were created using the Artec Spider 3d scanning tool. Further testing needs to be done 
to assess the effectiveness of using synthetic data.  

Application notes: Note that the neural network has difficulties crossing the reality gap from synthetic 
to real data. Using YOLACT that is first pre-trained on ImageNet and then trained on our specific 
dataset is also a possibility that works and does not require pre-training on synthetic data. Training only 
on synthetic data, however, is not good enough to detect the devices and components reliably. 

Generalisation to other devices: A large training set is created of images of a variety of HCA-classes 
together with hand labelled segmentation masks. 15 different classes of HCA are currently available to 
us. For each device 100 to 200 images are taken and manually annotated. To imitate a situation of the 
arrival of an unseen device, we will train YOLACT on 10 classes or more and leave at least 2 classes 
for testing. After training, YOLACT should give reliable instance segmentation labels and masks for 
HCA classes that are not seen in the training data.  

The images taken of each HCA class are the HCA in various states of disassembly. These images 
contain the device showing each face: front, back, left, and right side. Multiples of the same device can 
be in an image simultaneously. For creating training data, the device is manually disassembled step-by-
step taking images at every step of the procedure showing the device in the corresponding hardware, 
such as the vice, the cutter (see Deliverable D1.1 for description of the existing ReconCycle 
components), and in the hand of the robot. 

Batteries come in all shapes and sizes and can look completely different to batteries in this image 
training set. To address this, a labelled dataset of batteries is created, containing many batteries of 
different shapes, sizes and colours. For example: there are around 15 different popular coin sized 
batteries, which all have similar appearance, but different diameter. There are many different 
manufacturers of cylindrical batteries, and these usually have the brand of the manufacturer written on 
them. We are using the 10 most popular cylindrical batteries from ten most popular manufactures. This 
forms part of the training data. The same could be done for the PCBs, however there is less variation 
here than for the batteries. 

  

 

3 To, Thang, Jonathan Tremblay, Duncan Mckay, Yukie Yamaguchi, Kerby Leung, Adrian Balanon, Jia Cheng, 
William Hodge, and Stan Birchfield. NVIDIA Deep Learning Dataset Synthesizer (NDDS). C++. 2018. Reprint, 
NVIDIA Corporation, 2021. https://github.com/NVIDIA/Dataset_Synthesizer. 
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4. Specifications of Device Re-identification 

Types of the HCA handled: Kalo 1.5, Qundis/Siemens. 

Procedures for HCA type detection. The HCA type is detected using ResNet or a similar convolutional 
neural network that solves the classification task on images. Given training data of images of the HCA 
and the corresponding type as label, the classifier learns to distinguish the HCA types. 

Generalisation to other HCA types and devices. The device is detected using image segmentation as 
described in Section 2. From here the device needs to be identified as one that has been seen before or 
not seen before.  At the current phase of the project, this is still work in progress. For that, we plan to 
use a neural network classifier trained on several classes of devices. After training on those classes, the 
second to last layer of the network is used as a feature vector for any image of a device provided at the 
input. This feature vector describes the device in a meaningful way. Using unsupervised clustering 
techniques such as t-SNE4 or principle component analysis (PCA), the feature vector can be mapped to 
a space where both, classes of devices on which the network was trained and classes which were not 
participating in training, form different clusters. This way, clusters for new devices, which have not 
participated in network training, could be identified and labelled. 

Alternatively, a convolutional autoencoder could be used for the same purpose. Trained on different 
classes of devices without their explicit class label, the encoding of the autoencoder provides a feature 
vector at its bottleneck layer for each device. This feature vector can be mapped to a lower dimensional 
space, again using techniques like t-SNE or PCA, where classes should form their own clusters. The 
autoencoder can be trained in a supervised manner by having the same image as was provided to the 
input as the desired output.  Experimentation w.r.t. these different methods needs to be done to find the 
best technique for evaluation of unseen devices. 

5. Specification of gaps 
General definitions: Gaps are defined as an unoccupied space in a device, where around the space, 
there are components such as plastic parts, PCBs or batteries. The gap can be a point of disassembly. 
A tool end point could be inserted into the gap for the purposes of levering to separate parts of the 
device.  

Procedures for gap detection in case HCA type is known: For a known HCA type, the gaps that lead to 
successful disassembly are also known, too, based on human disassembly attempts. For a known device 
that is broken, the known gaps can be examined using a depth camera (specifically, we use Intel 
Realsense D435 depth camera) to see if these gaps are still intact. In Fig. 2 B the depth image of the 
Kalo 1.5 HCA (panel A) is shown, where three gaps are detected by a depth camera as indicated by 
white ellipses in panel B. If so, the levering procedure can be attempted. The Intel Realsense D435 
camera has been chosen, because it provides high resolution depth data for small scale objects. The 
Nerian 3D Stereo Vision camera is also being tested for how well it can detect gaps in the HCAs. 

 

 

4 Maaten, Laurens van der, and Geoffrey Hinton. ‘Viualizing Data Using t-SNE’. Journal of Machine Learning 
Research 9 (1 November 2008): 2579–2605. 
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Figure 2. Intel Realsense D435 camera showing RGB image (A) and depth image (B) of the Kalo 
1.5 HCA.  The camera is positioned directly above the device at a distance of 20cm. A big gap on 
the left side as well as two smaller gaps on the right-hand side are visible in the provided heat-
map (white ellipses).  

 

Procedures for gap detection in unknown devices: If the device is unknown, then there is no data about 
which gaps would allow levering to lead to a successful disassembly procedure. A depth camera is used, 
together with classical machine learning techniques and a trained image segmentation neural network, 
to reliably detect gaps in the unknown device. A procedure is made for choosing the most likely gap to 
apply a levering action to. Gaps can be attempted in order of the decreasing probability, which would 
be a similar procedure to a human disassembly, too.  

6. Specification of screws 
General definitions: Screws are frequent part in small electronic appliances. However, HCAs are 
normally constructed without screws. 

Procedures for screw detection: If screw detection is needed, we will re-use our previous work (from 
the H2020 IMAGINE project) for screw detection5. 

7. Storage and Retrieval Properties of the Disassembly Framework 
General definitions: In attempting to disassemble broken devices and unknown devices, disassembly 
steps are carried out with varying degrees of success. The aim is to record corresponding disassembly 
processes in a way that allows analysis of accumulated data and re-use of that data in a situation-
matched way. 

Procedures for storing successful actions. We are designing a database for storing a joint description, 
encompassing semantic components extracted from the visual scene and corresponding components of 
the executed action. Semantic components of the visual scene were described in Section 3. Disassembly 
steps corresponding to the scene will be stored as parameterized action hierarchy. Success of the 
execution will be included in the database, too. 

Retrieval: We will be evaluating similarity between a new scene and the stored scenes. For that, a 
similarity measure needs be defined. If similar enough scenes will be found, we will be executing 
corresponding action sequences taken from the database. For example, after gaps are detected in an 
unseen device, we can choose from database records where a similar gap configuration was found. 
Within these records, we can check in the database which of the observed gaps was allowing a 
successful levering action. The corresponding levering action will be attempted first, before probing 
other gaps. This way less probing on detected gaps will be needed before success in levering is achieved. 

 

5 Yildiz, E., & Wörgötter, F. (2019). DCNN-based screw detection for automated disassembly processes. In 
2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 187-
192). IEEE. 
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8. Conclusion 
To make use of the extracted scene semantic components, the components defined in this deliverable 
shall be paired with actions performed in those situations. Defining action structures that pair 
appropriately with extracted semantic scene components is the next required step towards generalized 
disassembly procedures, required in steps 4-6 defined in Table 1 above.  


