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1 Executive summary
In this deliverable we describe the software architecture designed for ReconCycle. The system
was developed to facilitate the implementation of automated disassembly solutions as proposed
in the project. It is based on ROS (Robot Operating System), which enforces the modularity
of the overall system. The deliverable describes the backbone architecture, the most important
modules and services, and the interplay between different components of the system. Interfaces
for the programming of robot movements by kinesthetic teaching and high-level task program-
ming based on FlexBE are also described. The provided in-depth description of the software
architecture and modules is important for all partners who need to integrate their solutions
into the ReconCycle demonstrator, which is under development at JSI.
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2 Software architecture based on ROS
The purpose of the software architecture is to ensure connectivity between the workcell modules
in the context of data flow. In the developed cell, each module is connected to the same network
in order to broadcast its data and receive information and instructions about what action to
perform at any given time. An overview of the developed software system architecture is shown
in Figure 1. Its constituent components are described in more detail throughout this deliverable.

The Robot Operating System (ROS) [13, 14] provides a suitable framework for developing
various software components that need to share data over the shared network. The various
tools and features that are available within ROS contribute to realizing the pursued software
reconfigurability of the cell [6]. In our case, software reconfigurability means that it is possible
to expand the cell’s functionalities without disrupting the existing software architecture. New
software components can be developed without the need to reprogram any of the existing ROS
nodes (the definition of ROS nodes is provided below). This also eases the development and
integration of new hardware components with their own ROS nodes. A requirement for the
ROS system to function properly is that roscore runs on one of the computers in the network
(denoted as ROS Master Computer in Fig. 1). Of the many features and tools provided within
ROS, we use the following ones to achieve a high degree of software modularity in our system:

• nodes – any program (written in any programming language) that has connectivity to
the ROS network and can therefore access to and publish data across it (i.e low-level
hardware drivers, high-level state machines, trajectory generation, etc.)

• topics – a publish/subscribe table advertized by each ROS node that defines the data that
can be provided by the said node, e. g. robot joint states, screwdriver torques, force-torque
sensor data, etc.

• messages – a predefined structure to encapsulate data to be transferred across the ROS
network for other nodes to read, e. g. robot joint states are written into sensor_msgs/
JointStates, which is a predefined standard ROS message structure that can be sent across
the ROS network.

• parameter server – used to store various static configuration parameters, e.g. controller
gains, camera exposure parameters, kinematic models, etc.

• services – a request/response based Remote Procedure Call (RPC) interface that a node
can expose in order to trigger short-running tasks from within the ROS network that
do not require preemption or monitoring, e. g. visual quality control, pneumatic gripper
actuation, tool exchange system lock/unlock, gravity compensation mode toggle, etc.

• action servers – similarly to services, a request/response RPC exposed by a node, however
are used to trigger long-running preemptable tasks from within the ROS network that
provide feedback throughout their execution, e. g. robot movement tasks, servo gripper
grasping tasks, flexible fixture reconfiguration, etc.

Apart from ensuring software reconfigurability, the proposed architecture also allows us to
control and monitor all the different modules in the workcell as well as the workcell as a whole.
The developed system is designed in such a way that each module connects directly to the ROS
network. This way we ensure that the data is structured and parsable by all of the software
components within the developed system.
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Figure 1: The ReconCycle software architecture.

An important feature of the proposed ROS-based software architecture is that we can pro-
gram and exchange information between heterogeneous hardware modules within a single soft-
ware architecture. Once the developer integrates a new module into ROS, the workcell pro-
grammer needs to know only which functionalities the new module exposes to ROS. No special
knowledge about hardware-specific software is needed to start programming new workcell ap-
plications.

2.1 Integration through Docker containers
Although ROS provides a good framework for the development of robot cells, setting it up on
a single computer still takes some effort and time. Our system is composed of several modules,
each with their own computer. Setting up ROS and maintaining all of them would be very
time-consuming. Moreover, the transfer of ROS code from one machine to another can be
rather difficult. These difficulties arise if the developers do not properly define all the external
resources (dependencies) that their code depends on. This is especially common in projects
like this one, where different consortium members cooperate on software solution that should
run on the same system. To solve these two issues, we decided to base our development and
overall system on Docker containers [3].

A Docker container is an isolated environment that is build from a Dockerfile. In this file,
we specify which Linux distribution the container is based on and what types of dependencies
should be installed. The main advantage of this approach is that unlike virtual machines,
Docker containers do not emulate the host’s hardware but share it. This in turn means that,
compared to a virtual machine, a Docker container uses fewer resources. Additionally, once the
Dockerfile has been written, the image that is built from it will be the same regardless of
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the platform it runs on. In terms of deploying ROS software on different modules, this means
that the developer designs the code in such a way that it runs within the Docker container and
thus removes the commonly encountered problem of unmet dependencies when transferring
the code. An example of quick deployment of software by using Docker containers is the
ReconCycle Raspberry Pi Docker image [15]. The details of how the Raspberry Pi integrates
into the ReconCycle cell are provided in Section 3.3.

In terms of network connectivity, Docker containers can communicate between each other
just like any other programs. This means that different software components running in different
Docker containers can exchange data seamlessly. Therefore, using this technology does not
hinder the overall ROS software architecture but it simplifies the set up of modules and the
transfer of code.

2.2 Persistent data storage with MongoDB
All ROS nodes within the ROS network can access the data on the network by either subscribing
to topics or by reading from the parameter server. However, as described at the beginning of
this section, these two channels are meant to either provide data of the current state or some
general parameters that can be used. To carry out a disassembly task, the robot has to move
through various configurations in its workspace using motion generators described in Section
4.3. The data required by these motion generators need to be stored as persistent data and
read during the disassembly process. It is also required that we are able to modify these data
as the need arises, e.g. when the final pose of the robot at one step of the disassembly process
changes.

To meet all these requirements, we decided to store the motion configuration data in the
MongoDB database. We integrated this database in our ROS software architecture by using
the already existing mongodb_store ROS package [11]. In our setup, the MongoDB database
runs on the ROS master computer. All the data are saved as named entries into the MongoDB
database. For point-to-point movements, the initial and final robot configurations are saved,
whereas complex trajectories are saved as parameters of dynamic movement primitives (DMPs).
It then becomes possible to define a high-level disassembly sequence that reads these named
entries (robot configurations or DMPs) from the database and moves the robot accordingly.
The high-level disassembly sequences are programmed using FlexBE (see Section 5). The poses
and trajectories are saved in the database as ROS messages corresponding to each type of
movement. Having these trajectories saved as named entries enables quick reconfiguration
in terms of changing robot motion. It is sufficient to overwrite the entry in the database
with a modified motion to update the disassembly sequence without changing the high-level
disassembly sequence program.

3 Plug-and-Produce connectivity
When designing the ReconCycle modules we strove towards high modularity in order to support
quick and efficient reconfigurability of the cell. Modularity needs to be supported both in
terms of hardware and software. On the software side, the ROS-based architecture enforces
modularity. To achieve modularity also on the hardware side, we designed each module as a
self-contained unit that is equipped with all the resources it requires to fulfil its function. While
this design does increase the overall size of the layout, it allows us to quickly add, remove or
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Figure 2: Computer render and photograph of an archetypical module.

exchange the modules of the cell and therefore change its functionality. This approach enables
an efficient preparation and adaptation of the cell for the disassembly of different electronic
products.

3.1 ReconCycle archetypical module
Adding or removing modules and therefore reconfiguring the cell should not require the designer
to dedicate a lot of time and attention to the software or hardware design and connectivity.
Our cell is therefore made out of modules that are built following the same archetypical design::
a steel frame that provides rigidity, with aluminium work surface that allows for easy mounting
of module-specific equipment. The frame is mounted on castors to make module transportation
an easy task. Within the frame there is a basic electric wiring which distributes power to the
module’s electronics like network switches, low voltage DC power supplies, etc. There is also
a network wiring that connects the devices contained within the module (computers, cameras,
controllers, etc.) and exposes them to the rest of the cell’s network through the "Plug &
Produce" (PnP) connectors (see Section 3.2), which have been newly developed in the project.
According to the requirements of each individual module, additional equipment (computers,
cameras, controllers, etc.) can be added to achieve the module’s desired functionality.

To achieve the desired software properties such as connectivity, each module within the cell
can connect to the ROS network. Thus, all modules are equipped with sufficient computational
hardware to run ROS nodes, thereby exposing each module’s data and functionalities to the
cell’s ROS environment. This way the modules can be controlled by the top-level task scheduling
software as soon as they are connected to the cell. Some modules may require more than just
network connectivity in order to function properly, e. g. pneumatic air or electric power. To
provide these capabilities, modules are connected to each other using the above-mentioned PnP
connectors.

The computational hardware that every module in the cell is equipped with is a Raspberry
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Figure 3: Electronics inside an archetypical module.

Pi 4 micro-computer. We mounted the so-called "PoE Hat" on each Raspberry Pi. This allows
the Raspberry Pi to be powered via PoE, thus reducing the amount of necessary power supplies.
There are other devices that can make use of the PoE connectivity (e.g. cameras). To connect
them to the network and at the same time provide them with power, we installed a PoE-enabled
network switch on each of the modules. These components are shown in Figure 3.

3.2 Plug-and-Produce (PnP) connector
The term "plug-and-play" carries an expectation of ease of use and reliable, full proof oper-
ation. A plug-and-play product, as its name suggests, can simply be connected and turned
on – and it works. The practical extension of plug-and-play products, when applied to in-
dustrial automation, has given way to a new term: Plug-and-Produce. The Plug-and-Produce
approach is the foundation of our standardized reconfigurable modular platform. It enables
fast deployment of robotic cells, development of compatible specialized tools by third parties,
and extremely fast, cheap and reliable work changeover. These properties are essential for a
small batch production of highly variable products. This is even more true when it comes to
recycling companies where products to be recycled constantly change and bring along different
requirements for disassembly.
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Figure 4: Plug-and-produce (PnP) connector.

3.2.1 PnP connector design

The enabling technology of the Plug-and-Produce production system is a Plug-and-Produce
(PnP) connector (shown in Figure 4), which standardizes how a group of specialised individual
modules are connected into a functional production system. Any module that is using the
PnP connector is compatible with the modular platform. The new PnP connector developed
in ReconCycle is the result of knowledge and experience gained through the use of the PnP
connector developed in the ReconCell project1, which was used to implement several industrial
production processes. Some of the main characteristics of the newly developed connector are:

• cost of a connector pair is around 1600 e,

• repeatability is better than 0.05mm,

• maximum allowed forces: up to 1500N in all directions,

• maximum allowed torques: up to 1000Nm in all directions,

• transmission of electrical power: 6 x 3.5kW connections,

• transmission of compressed air: 6 x 6mm connections @ 6Bar,

• transmission of ICT signals: 2 x 8 pin Ethernet connections,

• coupling: achieved by pushing together two sides of the connectors, no unlocking needed,

• decoupling: automatically by pneumatic actuators, optionally can be aided with a decou-
pling force of 600N (@6bar),

• mechanical gland: compensation of inaccuracies up to ±15mm in height and ±5° in axis
rotation,

1http://www.reconcell.eu/
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• connector is "unisex", meaning that it has no male and female side,

• integrated microcomputer, which makes the connector IoT device.

The new version of the PnP connector has a universal shape, which means it no longer fea-
tures a male and a female variant. Although this brings along a higher price tag, it significantly
adds to the ease of use and flexibility of the system. The backbone of the connector is a single
piece CNC machined aluminium body that ensures rigidity and stiffness as well as provides
housing for all other components. There is a set of centering pins and bushings that facilitate
proper alignment of the connector pair prior to the final coupling. The final mechanical cou-
pling is achieved using custom zero-point clamping units that provide secure and repeatable
connection of the connector pair. A big advantage of our zero-point system over most commer-
cially available systems is that it does not require any unlocking action before the coupling.
This eases the coupling process as the two connectors simply need to be pushed together with
some force and the mechanism locks into place without the need for any control or actuation.
The centre piece of the PnP connector is its power and data pass-through unit, which enables
all modules in the cell to use power and share data among themselves. In our design, this is
realized by using a commercially available modular connector unit, which can be assembled
according to individual requirements and can provide pass-through of electrical power and data
lines as well as pneumatic lines. An important advantage of the proposed design is the possi-
bility of height compensation. This is achieved by integrating a height compensation unit that
can even out height alignment errors of up to ±15mm and angular alignment errors of up to
±5°. Of course, in this case the modules need to be equipped with a calibration system.

Although similar systems are commercially available, none of them come close to our solution
when price/performance is taken into account.

3.3 Quick integration of new software modules on a microcomputer
Besides robot manipulation capabilities, the implementation of disassembly processes in the
ReconCycle cell requires the availability of various support functions, which are provided by
different auxiliary devices. For example, the robot module needs to be able to activate or
deactivate the pneumatic tool changer mounted on the top of the robot. For modules that
include an activation unit such as a clamp or a cutter, we need to be able to send activation
signals and to check the state of the device. We selected Raspberry Pi 4 as the archetypical
module’s microcomputer. Raspberry Pi provides us with the ability to generate control signals
and read the sensor values by attaching the auxiliary devices (equipment) to the GPIOs of
the Raspberry Pi. When the auxiliary equipment is connected to the GPIOs of the Raspberry
Pi, each GPIO in use must be properly configured by a suitable software library. Since the
auxiliary equipment attached to each individual module needs to work in synchronization with
the robots and the auxiliary equipment of other modules, we need to be able to control the
equipment globally throughout the cell. Therefore we have prepared a ROS package [17] that
wraps the developed software library for configuring and controlling GPIOs in a ROS node.
This way we enable the configuration and control of auxiliary devices through ROS services.
The cell programmer no longer needs to deal with GPIOs but can control and communicate
with the auxiliary equipment through ROS interfaces.

For the operation of each module’s auxiliary equipment, we implemented two ROS nodes
running on each individual module’s microcomputer. The first ROS node is "Equipment
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Server", which configures control of the GPIOs connected equipment according to the module
configuration file and forwards control commands from ROS services to the connected equip-
ment. The second ROS node is "Equipment Manager", which allows a user to modify the
module’s configuration file via a ROS service.

When the "Equipment Server" node is started, it first reads the individual module’s con-
figuration file actual_config, which is stored locally on the module’s microcomputer, and
then configures the required GPIOs. The configuration file must contain information which
additional equipment is attached to the module and to which GPIOs it is connected. Once
GPIOs are configured, the "Equipment Server" creates a separate ROS service for each GPIO
to control it. The names of the created ROS services are defined in the configuration file. In
operation, the "Equipment Server" accepts the commands sent to its ROS services and controls
the equipment connected to the GPIOs accordingly. Currently we have three different GPIO
configurations and control interactions that "Equipment Server" can handle. The first possible
configuration is a digital output where a service call can set the digital state of the GPIO,
making it suitable for controlling devices such as pneumatic valves. The next configuration is a
digital input that allows the digital state of devices such as digital sensors to be read on a service
call. The last is a configuration that, according to the value in the service call, controls PWM
signals that can be used to control devices such as step motors. The node also has a restart
service that – when triggered – closes all active services, releases the pin’s hardware interface,
and reads the configuration file again. Then it starts with the newly read configuration.

When switching from one disassembly process to another, we often need to change, add
or remove various auxiliary equipment attached to the modules. The "Equipment Manager"
node allows us in these cases to quickly change the "Equipment Server" configuration according
to the changes in the auxiliary equipment. We change the configuration by sending the new
desired configuration to the "Equipment Manager" ROS service. When the Equipment Manager
receives the new desired configuration, it overwrites the actual_config file and restarts the
"Equipment Server" by calling the node’s restart service. In this way, the "Equipment Server"
reconfigures itself according to the new configuration file. Two additional "Equipment Manager"
ROS services allow the user to read the current active configuration from the module and obtain
an empty configuration template with default parameter values. The configuration files are of
type yaml. They are human readable and can thus be modified manually.

Instead of writing or correcting configuration files manually, we created the ROS package
[16] with a more user-friendly approach to handling configuration files. This package contains
a client that can communicate with the "Equipment Manager". When we start the client,
it opens a terminal window user-interface that guides the user through creating or modifying
configuration files. At the beginning, the client searches for all "Equipment Managers" from the
different modules in its reach and offers the user to select the one he wants to configure. In the
next steps, the user can choose whether to modify the currently active configuration file or start
over with a blank template. According to the selected option, the client then reads the correct
configuration file from the "Equipment Manager". When changing the configuration, the user
only needs to answer the questions about the various parameter values asked by the terminal
guide. When the user is satisfied with the desired configuration, the client automatically changes
the yaml file and sends it to the module "Equipment Manager".

To simplify the installation and process control of our ROS package on the module’s mi-
crocomputer, we packed the ROS package into the Docker container [15] and prepared the
automatic setup of the system [18].
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4 Robot module

4.1 Franka ROS API
The robot control module is based on vendor-provided franka_ros2, which integrates the
robot’s API libfranka3 into ROS ecosystem.

The franka_control_node acts as a robot state publisher, which provides the current joint
state and estimated external wrench to topics using standard ROS messages.

Robot states that are specific to the Franka Emika Panda robot arm are published using
franka_msgs. These states include among others the current robot mode (kinesthetic guidance,
robot motion using an external program, robot motion using internal controller, reflex, error
recovery), which contact level is activated, whether or not collision threshold has been reached,
and the compensated external load.

The ROS node franka_control_node also provides the following ROS services:

• SetJointImpedance and SetCartesianImpedance specify joint or Cartesian stiffness for
the robot’s internal controller (damping is automatically derived from the stiffness),

• SetEEFrame specifies the transformation from the Panda’s flange frame to the tool centre
point (TCP).

• SetForceTorqueCollisionBehavior and SetFullCollisionBehavior set thresholds for
external forces in Cartesian and joint space to configure the collision reflex and contact
detection.

• SetLoad sets an external load (e.g. caused by a grasped object) that the robot controller
should compensate.

Most common gripper actions (Grasp, Move, Open) for the Panda hand gripper are also imple-
mented in the franka_control_node.

4.2 ros_control and action servers
Controllers are implemented using ros_control on a dedicated computer running real-time
Linux (Franka ROS Controller in Fig. 1). The ros_control framework provides a hardware
abstraction layer (RobotHW) that enables standardized access to actuators and comes with a
common interface (ControllerBase) to write robot-agnostic controllers [2]. The robot mid-
dleware is represented by the robot’s hardware interface. For the Franka Emika Panda robot,
such interface is implemented by the franka_hw ROS package using the libfranka library as
shown in Fig. 5.

By following such a scheme, usage of standard ROS controllers and 3rd party tools (such
as MoveIt!, Play Motion, or RQT joint trajectory controller GUI) is also possible.

Custom implementations of joint and Cartesian space impedance controllers (Section 4.4)
expose action server interface for different robot motion modes (Section 4.3). The benefit of
using ROS provided action servers to trigger robot motion is the ability to cancel the request
during execution and to get periodic feedback about how the request is progressing. Upon

3https://frankaemika.github.io/docs/franka_ros.html
3https://frankaemika.github.io/docs/libfranka.html
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acceptance, the action goal’s status is set to active if there are no other action goals, e.g.
motions, waiting for execution. If an action goal is preempted, the robot does not enter an
emergency state and does not require any restart procedure. The client receives appropriate
result messages in order to handle the preemption in its scheme and continue with another
action if desired. This enables integration with the state machine framework presented in
Section 5.

4.3 Motion generation
In order to achieve the desired robot motion, new desired joints have to be calculated at
every sample time. We implemented various trajectory generation strategies to meet the most
common robot motion needs in the context of automated disassembly:

• joint space point-to-point trajectory with trapezoidal velocity profile [10] (JointTrapVel
action server in Fig. 5),

• Cartesian space straight line point-to-point motion & quaternion SLERP trajectory [20]
with minimum jerk time evolution (CartLinTask action server in Fig. 5),

• joint space point-to-point trajectory with trapezoidal velocity profile, with the initial and
final pose provided in Cartesian space and transformed into joint space using inverse
kinematics (JointTrapVelCartTarget action server in Fig. 5),

• dynamic movement primitive (DMP) in joint space [8] (JointDMP action server in Fig.
5),

• Cartesian space DMP [24, 9] (CartDMP action server in Fig. 5),

Figure 5: Integration of ros_control controllers into the ReconCycle arhitecture.
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• direct joint angle control (e.g. using MoveIt! in Fig. 5).

To generate a motion according to the selected strategy, a new action goal (motion param-
eters) has to be sent to an appropriate action server.

JointTrapVel, JointTrapVelCartTarget and JointDMP action servers calculate joint con-
figuration at each sample time. The underlying joint_impedance_controller calculates ap-
propriate joint torques and sends them to the robot’s low-level controller using franka_hw and
libfranka as shown in Fig. 5.

CartLinTask and CartDMP action servers calculate task-space positions and orientations at
each sample time. The underlying Cartesian impedance controller calculates appropriate joint
torques and sends them to the robot’s low-level controller using franka_hw and libfranka as
shown in Fig. 5.

Using 3rd party motion generators or tools for direct joint angle control is also possible
though the standard ROS interfaces.

4.4 Torque control
We rely on joint and Cartesian impedance controllers to calculate the desired joint torques τd.
Joint impedance controller is based on the joint space dynamic model [21]. As the influence
of friction and gravity is compensated by the internal Panda controllers, we can calculate the
desired joint torques as follows:

τd = C(q, q̇)q̇ +Kq(qd − q) +Dq(q̇d − q̇), (1)

where qd, q̇d ∈ R7 are the desired positions and velocities, q, q̇ ∈ R7 are the current joint
positions and velocities and C(q, q̇) ∈ R7×7 is the Coriolis and centrifugal matrix. Kq,Dq ∈
R7×7 are diagonal matrices containing the gains that describe stiffness and damping per joint.
Currently we neglect the term associated with the inertia matrix M(q), which is needed to
realize the complete dynamic model.

To achieve impedance behaviour in the end-effector frame, the impedance controller equation
using the desired Cartesian motion is specified as follows:

τd = C(q, q̇)q̇ + J(q)T(Kxx̃+Dx
˙̃x), (2)

where x̃, ˙̃x ∈ R6 are the pose and velocity errors, J(q) ∈ R6×7 is the Jacobian matrix,Kx,Dx ∈
R6×6 are the gains describing stiffness and damping in the task space, and the rest of the
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variables are as in Eq. (1). Just like in the case of joint space impedance controller, we
currently neglect the term associated with the inertia matrix M (q).

The controllers are implemented as Simulink models. To enable integration with ros_
control, Simulink Coder is used to generate standalone binaries with C++ API. The result-
ing plugins (joint_impedance_controller or cartesian_impedance_controller in Fig. 5)
accept the following global input and output variables:

• u: Input variables (can be changed for every execution step).

• p: Parameters, that are given to the model just once at the beginning and remain constant
during execution.

• y: Output variables (updated in every execution step).

The API consists of the following functions:

• initialize(): Reads parameters p once at the beginning.

• step(): Computes the output y given input u at 1ms step size.

• terminate(): Cleans the parameters when the computations are finished.

Configuration of the Joint impedance controller is as follows:

• Input, u:
q, qd ∈ R7: the actual and desired joint positions.
q̇, q̇d ∈ R7: the actual and desired joint velocities.
C(q, q̇) ∈ R7×7: Coriolis and centrifugal matrix.

• Output, y:
τd ∈ R7: the required joint torque.

• Parameters, p:
Kq, Dq ∈ R7×7: diagonal joint stiffness and damping matrices.

The Cartesian impedance control law is encoded in the plugin as follows:

• Input, u:
Td ∈ R4×4: the desired transformation matrix of the end effector in base frame

(used to calculate the pose error x̃ ∈ R6).
vd, ωd ∈ R3: the desired linear and angular velocities (used to calculate the velocity

error ˙̃x ∈ R6).
C(q, q̇) ∈ R7×7: Coriolis and centrifugal matrix.
J(q) ∈ R6×7: Jacobian matrix.
q, q̇ ∈ R7: the actual joint positions and velocities.

• Output, y:
τd ∈ R7: the required joint torque.

• Parameters, p:
Kx, Dx ∈ R6×6: diagonal stiffness and damping matrices.
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Figure 7: FlexBE application dashboard. Under the first tab ("Behavior Dashboard"), the
configuration parameters of the state machines involved in the desired behavior are specified.
Under the second tab ("Statemachine Editor" enclosed in a blue rectangle), the desired behavior
is constructed. A behavior construction example is shown in Fig. 8.

5 Integration of FlexBE state machine editor
Manually coding a program that sends instructions in a specific order to all of the components
of the cell (i.e. robots and peripheral equipment) requires a deep know-how of both the pro-
gramming language and the underlying system. To facilitate this process, we integrated FlexBE
in our workflow. FlexBE is a high-level behavior engine that supports creating, executing and
monitoring complex robot behaviors [4]. When creating a FlexBE state machine (in FlexBE
terms it is called “behavior”) the user can specify various parameters and constants that will
be used during the execution in the Dashboard (see Fig. 7). It also provides a graphical user
interface where each state is represented by a square and the transition between them are rep-
resented by arrows (Fig. 8b). This provides the user with an intuitive interface to change the
state machine sequence by simply adding or removing states and creating connections between
them.

Like many other tools that we used when developing the ReconCycle architecture, FlexBE
is open-source. This is advantages because there are many ready-to-use states developed by
the community. However, as expected, within the available community-developed states we did
not find ones that would be a parfect fit for our system. Therefore, it was necessary to create
states that allow us to control the execution of the disassembly within our cell.

We have created multiple custom-made FlexBE states that are used to execute robot trajec-
tories, control the peripheral machinery, manipulate the process data, etc. Each FlexBE state
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(a) FlexBE behavior specifying the process path
through concurrency containers and event states

(b) State machines inside the concurrency con-
tainer

Figure 8: Definition of a FlexBE behavior with concurrency containers that include two state
machines specifying the concurrent motion of two robot arms. Both state machines in the
container have to finish successfully in order to continue to the next stage in the execution
pipeline.

is associated with a service or action server developed for ReconCycle. These states perform
the following operations:

• Reading from and writing to MongoDB database, e.g. to store data acquired by kines-
thetic teaching and to read data to initialize the desired robot movements (using mongodb_
store interface).

• Controlling and monitoring the execution of robot motions using "Action Servers".

• Controlling the peripheral equipment, e.g. grippers, pneumatic vice, etc., that does not
require preemption and continuous monitoring.

• Sensor data acquisition and processing, e.g. vision pipeline.

5.1 Parallel state execution
A sequential execution of states may not always be sufficient to specify an optimal task execution
in a robotic cell thats contain multiple active components. Hence FlexBE also enables parallel
(concurrent) execution of states.

State machines are a great representation for tasks that should be executed sequentially and
where the decision which state becomes active after the previous one depends on the outcome
of operations associated with previous states. For situations where multiple states should be
executed at the same time (in parallel), FlexBE provides a concurrency container (Fig. 8a). A
concurrency container delivers parallel execution and monitoring of multiple states (Fig. 8b),
where each state specifies the motion of a different robot arm or an operation involving some
other part of the cell.
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6 Simulation of the recycling cell in Gazebo
Within the ROS community, one of the most often used software for simulating robots is
Gazebo [7]. Aside from offering a good dynamic simulation and graphical interface, its main
advantage – compared to other robot simulators – is its seamless integration into ROS. The
robots simulated in Gazebo are controlled via the ros_control interface (see Section 4.2).

Figure 9: Simulation of the Panda robot in Gazebo

To simulate the Panda robot in Gazebo, a dynamic model of the robot needs to be created.
The official software that is available for the Panda robot does not include a dynamic model
that could be easily integrated into Gazebo. We therefore used a third-party software stack
that is publicly available on Github [22]. This package provides the dynamic description of the
robot, the 3D models of the robot’s links and the hardware abstraction layer implemented in
ros_control (see Fig. 5 in Section 4.2). Having the hardware abstraction layer implemented
in ros_control allowed us to use the same controller plug-ins and action servers both for the
simulated and the real robot. In practice this means, that it is possible to develop a top-
level FlexBE program that carries out the disassembly in simulation, independently of the real
system. Figure 9 displays the Panda robot in the Gazebo robot simulator.

6.1 Cell visualization in Rviz
As explained above, Gazebo provides the dynamic simulation of our robots and exposes the same
control interfaces as for the real robot. However, the ReconCycle robot cell is not only composed
of the robot arms but also of many other modules that are required for the disassembly of an
electronic device (see Sec. 3). When developing the top-level FlexBE program, the developer
needs to visualize the simulated robot in the entire robot cell. Since these modules are not
expected to move as a result of external forces during the disassembly, we do no need to simulate
them dynamically. We therefore decided to build a visual model of the cell in the Unified Robot
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Description Format - URDF [25]. This format dictates how to describe a kinematic chain of
links and allows us to append CAD meshes to them. To visualize this kinematic chain, we used
Rviz [19].

Rviz provides a graphical interface where we can visualize the 3D model(s) described with
the URDF file using various plug-ins within Rviz. Among those that we used is the "Robot
Model" that displays the 3D meshes and transformation frames (tf ) that display all of the
coordinate frames available within our kinematic model. A visualization of two Panda robots
installed on the modular ReconCycle cell is displayed in Figure 10. Rviz visualizes each robot
by subscribing to its joint_states topic, which receives information either from the real robot
or from dynamic simulation.

Figure 10: The ReconCycle cell visualized in Rviz.

7 Important services

7.1 Kinesthetic guidance & Helping Hand GUI
The definition of robot motions to carry out disassembly procedures can be a difficult and time
consuming process even for experts, let alone non-expert users. Programming by Demonstra-
tion (PbD) provides a methodology to define such motions in a natural way rather than by
coding complex programs in a robot programming language. In ReconCycle, PbD is based on
kinesthetic guidance, which enables the user to move the robot through its workspace by phys-
ically guiding it along the desired path. Kinesthetic guidance is best implemented on robots
with torque sensors in each joint, such as the Franka Emika Panda manipulator arms [5] utilized
in ReconCycle. By utilizing the torque sensors and a model of the robot’s dynamics, the robot
control system can compensate for the effects of gravity. Thus the demonstrator can focus on
task demonstration without needing to overcome also the robot’s weight and the friction in its
joints.

Compared to traditional robot programming approaches where the robot operator uses the
so called teaching-pendant, kinesthetic guidance is much simpler to use. However, it comes
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Figure 11: The "Capture controls" tab of the Helping Hand graphical user interface.

with a drawback – lack of an interface to move and store the taught poses. To overcome this
drawback, we developed a graphical user interface (GUI) to help users storing said skills into
the MongoDB database (Fig. 11). We named it Helping Hand. This user interface runs on a
computer connected to the ROS network so it has access to all that is being broadcast on the
network, including robot joint configurations and poses of their tool center point (TCP). This
GUI is used to store either single configurations (joint or Cartesian space) or whole trajectories
encoded as DMPs (joint or Cartesian space) as named entries into the database.

7.1.1 Using the Helping Hand GUI

The GUI has two main tabs: "Capture controls" and "Settings/Configuration". The first is
used during the kinesthetic teaching process to store data into the database, while the second
is used to configure the GUI itself.

The Capture controls: this tab is composed of the following fields (see Fig. 11):

• Available data to store – when a user triggers a signal defined in the GUI’s configuration,
the current robot posture (joint and Cartesian space) are saved in a temporary buffer and
displayed in this field.

• Status report – this field is used to display some basic status information of the robot
and the GUI.

• Desired Database Name of the Entry – to store some data into the database, the user
writes the name under which the entry should be saved into the database, selects the
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Figure 12: The "Settings/Configuration" tab of the Helping Hand graphical user interface.

single data entity from the "Available data to store" fields, and then clicks on the "Save
to Database" button.

• Selected Data Details – Before saving the data into the database, the user can inspect the
data details. These details are displayed for the data selected from the "Available data
to store" field.

• Listening to these addresses – The topics displayed in this field inform the user, which
robot status is available to be recorded.

Fig. 12 shows the Settings/Configuration tab. It presents the current configuration of the
GUI:

• Trigger Name – The name of the configuration for the specific trigger.

• Robot Namespace – The namespace of the robot for the specific trigger.

• Trigger Topic – The name of the ROS topic (of the type std_msgs/Bool). Upon triggering
it signals the GUI to save the data into the aforementioned temporary buffer.

• Trigger Type – The type of the trigger, this can be either rising_edge, falling_edge
or hold.

• Trigger Callback – The storing function that is executed when a trigger is detected.

The configuration is loaded when the GUI is started. It is read from a YAML file.
To acquire and store the required information, the user first demonstrates the skill on the

robot and then triggers a signal that stores this skill into a temporary buffer of the GUI. This
buffer is used so the user can demonstrate multiple skills or multiple variations of a single
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Figure 13: Bluetooth media controller is mounted on the robot arm to provide an easy-to-use
interface to the Helping Hand GUI.

skill before s/he interacts with the GUI and thus saves time. After all the skills have been
demonstrated and stored in the buffer, the user can evaluate which of them should be stored
(the "Available data to store" field in Fig. 11) in the database and in what form (either single
configurations or whole trajectories). The user then selects the data from the buffer, defines
a name under which it will be saved in the database, and clicks on the "Save to Database"
button. These named entries are then used by the top-level scheduler (see the details about
the usage of FlexBE in Section 5) to generate robot motions.

To further improve on the intuitiveness and speed of kinesthetic guidance, we equipped the
Panda robots with a button interface. The button interface is a small battery-powered media
control device (Fig. 13) that connects to the computer via Bluetooth. Therefore, we either need
a computer that has Bluetooth interface integrated or we must use a Bluetooth USB dongle.
To fully integrate this button interface into the ROS architecture and therefore use it during
the kinesthetic teaching process, a ROS node was developed that reads the key-press events
and broadcasts this information on the ROS topics. Integrating it with the Helping Hand GUI
was done by writing a configuration file that describes the buttons as triggers for the storing
events explained above.

7.2 Vision integration
For the robot arm to interact with the electronic devices that are to be recycled, the position and
orientation of the objects needs to be known. A high resolution camera by Basler is therefore
mounted directly above the work surface for each of the modules where objects need to be
detected. The finish of the archetypical module’s surface is matt grey to ease vision processing.
The Basler camera can return an image at 4k resolution, but for our purposes this has been
limited to an image of resolution 1450 x 1450, which the camera can send to the computer at a
frequency of 5Hz. Larger frame rates are not needed due to the fact that visual scene analysis
only needs to be performed "point-wise" (situation assessment).
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Figure 14: Example of the vision software detecting the pose of heat cost allocator components
on the work surface.

In it’s current state, the vision software works on the Kalo 1.5 heat cost allocator (HCA),
but can be adapted to other devices without much effort. The objects that it can currently
detect are:

• the HCA before dissasembly has occurred,

• the battery completely separated from the device,

• the battery with part of the PCB still attached,

• the PCB on it’s own,

• internal components of the HCA such as internal plastics.

When the HCA is detected, the object’s discrete orientation is also provided as part of the
class name. The possible discrete orientations that can be detected are: front, side1, back, and
side2. The orientation “front” is given when the face facing the camera is the “front” face, and
similarly for the other 3 faces. “side1” is the side to the right of the front and “side2” the side to
the left of the front face. An example of what the vision software detects is shown in Figure 14.
For each detected object, the following information is given:
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• the class name of the detection,

• the detection score, which is a real number in the interval [0, 1] for how confident the
model is in the prediction,

• the vertices of the oriented bounding box in a list of x, y coordinates,

• the x, y coordinates of the oriented bounding box center,

• the rotation quaternion of the oriented bounding box.

Note that all coordinates are in meters and are given relative to the work surface corners. This
may in future be adjusted to be relative to certain screw holes on the work surface because
they are easier to detect when modules are connected together.

The vision software comes with a ROS front-end. The results computed by the vision soft-
ware can be published continuously at a rate of around 4 fps when Nvidia 1080ti graphics card
is used for processing or around 3 fps when Nvidia 1060 is used. When publishing continuously,
after publishing the results, the software takes the latest image received from the camera to
process next. Alternatively, the data for the latest camera image can be published on receiving
a service call. The vision software provides the following ROS nodes:

• /camera/image_color camera image (undistorted),

• /vision_pipeline/image_color labeled camera image (undistorted),

• /vision_pipeline/data JSON string containing a list of detections.

The vision software uses the Yolact neural network [1] for instance segmentation. Yolact uses
ResNet at its core and has been chosen for its ability to perform real-time instance segmentation.

(a) Synthetic image (b) The corresponding instance segmentation

Figure 15: Sample from the synthetic dataset generated using Unreal Engine with the NDDS
plugin.
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Yolact requires a dataset to train on. A synthetic dataset has been created, consisting of 20.000
labeled images. An example is shown in Figure 15. It was generated using Unreal Engine with
the NDDS plugin [23]. The 3D models have been created using a 3D scanner (Artec Space
Spider). In addition, we have created a second dataset that consist of 80 hand labeled images
from the real-world setup. Yolact is first trained on the synthetic dataset and then on the real
dataset. The model trained on the synthetic dataset only can be used to detect the real world
objects. However, there are many false positives on real images if the mode has been trained
only on synthetic data. Thus the real data have been added to bridge the reality gap.

7.3 Integration of qb SoftHand Research
The qb SoftHand Research [12] is an anthropomorphic robotic hand based on soft robotics
technology. With its under-actuated structure, the hand is able to replicate about 75% of the
grasps of a human hand. It is able to naturally adapt to the objects it picks up without the
sophisticated sensing technology. This simplicity and flexibility make it an excellent gripping
device that can grasp a variety of different objects without any change in the control action.
This makes it very suitable for use in the ReconCycle project, where the robot should be able to
pick up objects for recycling that come in many different shapes, states of wear and tear, and in
different configurations on the table. The position and orientation of the objects to be grasped
is detected by vision, which also introduces some errors into the detected values. The gripping
flexibility of qb SoftHand makes it possible to reduce the influence of these uncertainties and
errors, which ensures more robust grasping.

In ReconCycle, the qb SoftHand is mounted on a Franka Emika Panda manipulator equipped
with a commercial tool changer, as shown in Figure 16. The hand is connected through the
tool changer with custom wiring that allows for quick mounting or dismounting of the hand on
the robot.

The single-motor actuation makes the hand plug-and-play and easy to control. There is
only one motor that accepts continuous percentage values for the opening & closing of the

Figure 16: qb SoftHand Research soft five-finger gripper attached to the Franka Emika Panda
robot arm
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whole hand. On the low-level, the hand is controlled by dedicated driver electronics. On the
high-level, the driver electronics connects to a computer with a USB cable. It is then possible to
control the hand from the computer by sending the appropriate serialized signals. To integrate
the hand into our ROS architecture, we use a modified ROS driver implemented as an "Action
Server" that can be used to trigger the opening & closing of the hand. The action server
receives the desired grasping values from the action client trough ROS and converts them so
they can be sent to the low-level driver. The standardized ROS control interface used in the
hand’s action server also enables us to control the hand using standard motion generators and
joint_position_controller, similar to the control scheme shown in Fig. 5.

We use Raspberry Pi 4 microcomputer, which is already part of every ReconCycle module,
as the control computer. We integrated the required software for interaction with the hand,
i.e. the hand’s action server and the software drivers for the hand electronics, into the Docker
container. This allows easy installation of the entire software set on the microcomputer and
migration to a different microcomputer if required. It also prevents interference with other
software on the microcomputer.

We have prepared a suitable FlexBE state machine to control the qb SoftHand Research
within more complex tasks. The state takes as input the desired value of the hand’s grasp
and the desired time interval for this movement. The implemented FlexBE state allows easy
integration of different hand movements for grasping through the entire disassembly sequence
that runs in the ReconCycle cell.
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